In addition to all Environmental Health and Safety Polies established by MICA, the Interdisciplinary Sculpture department, and the Digital Fabrication Studio, Student must also follow the biosafety policies of this class and laboratory. Our modest lab and the work we will undertake in class fall under Biosafety Level 1 (BSL1). We will work with only common lab strains of organisms known to not pose any considerable harm. In general, the work we do in class will be safer than what you likely encounter in an average kitchen. We will typically be more worried about you contaminating your work than your work contaminating you.. However, we will follow strict protocols regarding biosafety. These lab policies will be detailed in class and posted in the lab. The general policies are defined as follows:

  • All health and safety instructions and policies posted in the lab, stated by the instructor or GTI, or provided in lab protocols must be followed.
  • No work outside of the specifically assigned lab exercises may be done in the lab without express consent of the instructor.
  • No new organisms may be cultured in the lab without proper biosafety approval.
  • No organisms or materials may leave the lab without express consent of the instructor.
  • Living genetically engineered materials must not leave the lab, without approval and defined conditions from a designated biosafety expert.
  • All waste with any biological material must be properly disposed of in biohazard bins, and all liquid biohazards must be properly neutralized with bleach prior to disposal.
  • No food or drink is permitted to be consumed, stored, or even present in the lab.
  • No pets are ever permitted in the lab.
  • Student must follow the class code of ethics.
  • If ever in doubt about what you are doing, stop and ask the instructor.


The following text is from the World Health Organization recommendations on BSL 1 and 2 labs.

3. Basic laboratories –
Biosafety Levels 1 and 2
For the purposes of this manual, the guidance and recommendations given as minimum
requirements pertaining to laboratories of all biosafety levels are directed at
microorganisms in Risk Groups 1–4. Although some of the precautions may appear
to be unnecessary for some organisms in Risk Group 1, they are desirable for training
purposes to promote good (i.e. safe) microbiological techniques (GMT).
Diagnostic and health-care laboratories (public health, clinical or hospital-based)
must all be designed for Biosafety Level 2 or above. As no laboratory has complete
control over the specimens it receives, laboratory workers may be exposed to organisms
in higher risk groups than anticipated. This possibility must be recognized in the
development of safety plans and policies. In some countries, accreditation of clinical
laboratories is required. Globally, standard precautions (2) should always be adopted
and practised.
The guidelines for basic laboratories – Biosafety Levels 1 and 2 presented here are
comprehensive and detailed, as they are fundamental to laboratories of all biosafety
levels. The guidelines for containment laboratories – Biosafety Level 3 and maximum
containment laboratories – Biosafety Level 4 that follow (Chapters 4 and 5) are
modifications of and additions to these guidelines, designed for work with the more
dangerous (hazardous) pathogens.
Code of practice
This code is a listing of the most essential laboratory practices and procedures that are
basic to GMT. In many laboratories and national laboratory programmes, this code
may be used to develop written practices and procedures for safe laboratory operations.
Each laboratory should adopt a safety or operations manual that identifies known
and potential hazards, and specifies practices and procedures to eliminate or minimize
such hazards. GMT are fundamental to laboratory safety. Specialized laboratory
equipment is a supplement to but can never replace appropriate procedures. The most
important concepts are listed below.
1. The international biohazard warning symbol and sign (Figure 1) must be displayed
on the doors of the rooms where microorganisms of Risk Group 2 or higher risk
groups are handled.
• 10 •
2. Only authorized persons should be allowed to enter the laboratory working areas.
3. Laboratory doors should be kept closed.
4. Children should not be authorized or allowed to enter laboratory working areas.
5. Access to animal houses should be specially authorized.
6. No animals should be admitted other than those involved in the work of the
Personal protection
1. Laboratory coveralls, gowns or uniforms must be worn at all times for work in the
2. Appropriate gloves must be worn for all procedures that may involve direct or
accidental contact with blood, body fluids and other potentially infectious materials
or infected animals. After use, gloves should be removed aseptically and hands
must then be washed.
3. Personnel must wash their hands after handling infectious materials and animals,
and before they leave the laboratory working areas.
Figure 1. Biohazard warning sign for laboratory doors
Biosafety Level: _________________________________
Responsible Investigator: _________________________
In case of emergency call: ________________________
Daytime phone: __________Home phone: ___________
Authorization for entrance must be obtained from
the Responsible Investigator named above.
WHO 04.64
• 11 •
4. Safety glasses, face shields (visors) or other protective devices must be worn when
it is necessary to protect the eyes and face from splashes, impacting objects and
sources of artificial ultraviolet radiation.
5. It is prohibited to wear protective laboratory clothing outside the laboratory, e.g.
in canteens, coffee rooms, offices, libraries, staff rooms and toilets.
6. Open-toed footwear must not be worn in laboratories.
7. Eating, drinking, smoking, applying cosmetics and handling contact lenses is
prohibited in the laboratory working areas.
8. Storing human foods or drinks anywhere in the laboratory working areas is
9. Protective laboratory clothing that has been used in the laboratory must not be
stored in the same lockers or cupboards as street clothing.
1. Pipetting by mouth must be strictly forbidden.
2. Materials must not be placed in the mouth. Labels must not be licked.
3. All technical procedures should be performed in a way that minimizes the formation
of aerosols and droplets.
4. The use of hypodermic needles and syringes should be limited. They must not be
used as substitutes for pipetting devices or for any purpose other than parenteral
injection or aspiration of fluids from laboratory animals.
5. All spills, accidents and overt or potential exposures to infectious materials must
be reported to the laboratory supervisor. A written record of such accidents and
incidents should be maintained.
6. A written procedure for the clean-up of all spills must be developed and followed.
7. Contaminated liquids must be decontaminated (chemically or physically) before
discharge to the sanitary sewer. An effluent treatment system may be required,
depending on the risk assessment for the agent(s) being handled.
8. Written documents that are expected to be removed from the laboratory need to
be protected from contamination while in the laboratory.
Laboratory working areas
1. The laboratory should be kept neat, clean and free of materials that are not pertinent
to the work.
2. Work surfaces must be decontaminated after any spill of potentially dangerous
material and at the end of the working day.
3. All contaminated materials, specimens and cultures must be decontaminated before
disposal or cleaning for reuse.
4. Packing and transportation must follow applicable national and/or international
5. When windows can be opened, they should be fitted with arthropod-proof screens.
• 12 •
Biosafety management
1. It is the responsibility of the laboratory director (the person who has immediate
responsibility for the laboratory) to ensure the development and adoption of a
biosafety management plan and a safety or operations manual.
2. The laboratory supervisor (reporting to the laboratory director) should ensure
that regular training in laboratory safety is provided.
3. Personnel should be advised of special hazards, and required to read the safety or
operations manual and follow standard practices and procedures. The laboratory
supervisor should make sure that all personnel understand these. A copy of the
safety or operations manual should be available in the laboratory.
4. There should be an arthropod and rodent control programme.
5. Appropriate medical evaluation, surveillance and treatment should be provided
for all personnel in case of need, and adequate medical records should be
Laboratory design and facilities
In designing a laboratory and assigning certain types of work to it, special attention
should be paid to conditions that are known to pose safety problems. These include:
1. Formation of aerosols
2. Work with large volumes and/or high concentrations of microorganisms
3. Overcrowding and too much equipment
4. Infestation with rodents and arthropods
5. Unauthorized entrance
6. Workflow: use of specific samples and reagents.
Examples of laboratory designs for Biosafety Levels 1 and 2 are shown in Figures 2
and 3, respectively.
Design features
1. Ample space must be provided for the safe conduct of laboratory work and for
cleaning and maintenance.
2. Walls, ceilings and floors should be smooth, easy to clean, impermeable to liquids
and resistant to the chemicals and disinfectants normally used in the laboratory.
Floors should be slip-resistant.
3. Bench tops should be impervious to water and resistant to disinfectants, acids,
alkalis, organic solvents and moderate heat.
4. Illumination should be adequate for all activities. Undesirable reflections and glare
should be avoided.
5. Laboratory furniture should be sturdy. Open spaces between and under benches,
cabinets and equipment should be accessible for cleaning.
6. Storage space must be adequate to hold supplies for immediate use and thus prevent
clutter on bench tops and in aisles. Additional long-term storage space, conveniently
located outside the laboratory working areas, should also be provided.
• 13 •
7. Space and facilities should be provided for the safe handling and storage of solvents,
radioactive materials, and compressed and liquefied gases.
8. Facilities for storing outer garments and personal items should be provided outside
the laboratory working areas.
9. Facilities for eating and drinking and for rest should be provided outside the
laboratory working areas.
10. Hand-washing basins, with running water if possible, should be provided in each
laboratory room, preferably near the exit door.
11. Doors should have vision panels, appropriate fire ratings, and preferably be selfclosing.
12. At Biosafety Level 2, an autoclave or other means of decontamination should be
available in appropriate proximity to the laboratory.
13. Safety systems should cover fire, electrical emergencies, emergency shower and
eyewash facilities.
14. First-aid areas or rooms suitably equipped and readily accessible should be available
(see Annex 1).
Figure 2. A typical Biosafety Level 1 laboratory
(graphics kindly provided by CUH2A, Princeton, NJ, USA)
• 14 •
15. In the planning of new facilities, consideration should be given to the provision of
mechanical ventilation systems that provide an inward flow of air without
recirculation. If there is no mechanical ventilation, windows should be able to be
opened and should be fitted with arthropod-proof screens.
16. A dependable supply of good quality water is essential. There should be no crossconnections
between sources of laboratory and drinking-water supplies. An antibackflow
device should be fitted to protect the public water system.
17. There should be a reliable and adequate electricity supply and emergency lighting
to permit safe exit. A stand-by generator is desirable for the support of essential
equipment, such as incubators, biological safety cabinets, freezers, etc., and for the
ventilation of animal cages.
18. There should be a reliable and adequate supply of gas. Good maintenance of the
installation is mandatory.
19. Laboratories and animal houses are occasionally the targets of vandals. Physical
and fire security must be considered. Strong doors, screened windows and restricted
issue of keys are compulsory. Other measures should be considered and applied,
as appropriate, to augment security (see Chapter 9).
Laboratory equipment
Together with good procedures and practices, the use of safety equipment will help to
reduce risks when dealing with biosafety hazards. This section deals with basic
principles related to equipment suitable for laboratories of all biosafety levels.
Requirements for laboratory equipment pertinent to higher biosafety levels are dealt
with in the relevant chapters.
The laboratory director should, after consultation with the biosafety officer and
safety committee (if designated), ensure that adequate equipment is provided and
that it is used properly. Equipment should be selected to take account of certain general
principles, i.e. it should be:
1. Designed to prevent or limit contact between the operator and the infectious
2. Constructed of materials that are impermeable to liquids, resistant to corrosion
and meet structural requirements
3. Fabricated to be free of burrs, sharp edges and unguarded moving parts
4. Designed, constructed and installed to facilitate simple operation and provide for
ease of maintenance, cleaning, decontamination and certification testing; glassware
and other breakable materials should be avoided, whenever possible.
Detailed performance and construction specifications may need to be consulted to
ensure that the equipment possesses the necessary safety features (see also Chapters
10 and 11).
• 15 •
Figure 3. A typical Biosafety Level 2 laboratory
(graphics kindly provided by CUH2A, Princeton, NJ, USA). Procedures likely to generate
aerosols are performed within a biological safety cabinet. Doors are kept closed and
are posted with appropriate hazard signs. Potentially contaminated wastes are separated
from the general waste stream.
Essential biosafety equipment
1. Pipetting aids – to avoid mouth pipetting. Many different designs are available.
2. Biological safety cabinets, to be used whenever:
— infectious materials are handled; such materials may be centrifuged in the open
laboratory if sealed centrifuge safety cups are used and if they are loaded and
unloaded in a biological safety cabinet
— there is an increased risk of airborne infection
— procedures with a high potential for producing aerosols are used; these may
include centrifugation, grinding, blending, vigorous shaking or mixing, sonic
disruption, opening of containers of infectious materials whose internal pressure
may be different from the ambient pressure, intranasal inoculation of animals,
and harvesting of infectious tissues from animals and eggs.
3. Plastic disposable transfer loops. Alternatively, electric transfer loop incinerators
may be used inside the biological safety cabinet to reduce aerosol production.
• 16 •
4. Screw-capped tubes and bottles.
5. Autoclaves or other appropriate means to decontaminate infectious materials.
6. Plastic disposable Pasteur pipettes, whenever available, to avoid glass.
7. Equipment such as autoclaves and biological safety cabinets must be validated with
appropriate methods before being taken into use. Recertification should take place
at regular intervals, according to the manufacturer’s instructions (see Chapter 7).
Health and medical surveillance
The employing authority, through the laboratory director, is responsible for ensuring
that there is adequate surveillance of the health of laboratory personnel. The objective
of such surveillance is to monitor for occupationally acquired diseases. Appropriate
activities to achieve these objectives are:
1. Provision of active or passive immunization where indicated (see Annex 2)
2. Facilitation of the early detection of laboratory-acquired infections
3. Exclusion of highly susceptible individuals (e.g. pregnant women or immunocompromised
individuals) from highly hazardous laboratory work
4. Provision of effective personal protective equipment and procedures.
Guidelines for the surveillance of laboratory workers handling microorganisms
at Biosafety Level 1
Historical evidence indicates that the microorganisms handled at this level are unlikely
to cause human disease or animal disease of veterinary importance. Ideally, however,
all laboratory workers should undergo a pre-employment health check at which their
medical history is recorded. Prompt reporting of illnesses or laboratory accidents is
desirable and all staff members should be made aware of the importance of maintaining
Guidelines for the surveillance of laboratory workers handling microorganisms
at Biosafety Level 2
1. A pre-employment or preplacement health check is necessary. The person’s medical
history should be recorded and a targeted occupational health assessment
2. Records of illness and absence should be kept by the laboratory management.
3. Women of childbearing age should be made aware of the risk to an unborn child
of occupational exposure to certain microorganisms, e.g. rubella virus. The precise
steps taken to protect the fetus will vary, depending on the microorganisms to
which the women may be exposed.
Human error and poor technique can compromise the best of safeguards to protect
the laboratory worker. Thus, a safety-conscious staff, well informed about the
recognition and control of laboratory hazards, is key to the prevention of laboratory•
17 •
acquired infections, incidents and accidents. For this reason, continuous in-service
training in safety measures is essential. An effective safety programme begins with the
laboratory managers, who should ensure that safe laboratory practices and procedures
are integrated into the basic training of employees. Training in safety measures should
be an integral part of new employees’ introduction to the laboratory. Employees should
be introduced to the code of practice and to local guidelines, including the safety or
operations manual. Measures to assure that employees have read and understood the
guidelines, such as signature pages, should be adopted. Laboratory supervisors play
the key role in training their immediate staff in good laboratory techniques. The
biosafety officer can assist in training and with the development of training aids and
documentation (see also Chapter 21).
Staff training should always include information on safe methods for highly
hazardous procedures that are commonly encountered by all laboratory personnel
and which involve:
1. Inhalation risks (i.e. aerosol production) when using loops, streaking agar plates,
pipetting, making smears, opening cultures, taking blood/serum samples,
centrifuging, etc.
2. Ingestion risks when handling specimens, smears and cultures
3. Risks of percutaneous exposures when using syringes and needles
4. Bites and scratches when handling animals
5. Handling of blood and other potentially hazardous pathological materials
6. Decontamination and disposal of infectious material.
Waste handling
Waste is anything that is to be discarded.
In laboratories, decontamination of wastes and their ultimate disposal are closely
interrelated. In terms of daily use, few if any contaminated materials will require actual
removal from the laboratory or destruction. Most glassware, instruments and
laboratory clothing will be reused or recycled. The overriding principle is that all
infectious materials should be decontaminated, autoclaved or incinerated within the
The principal questions to be asked before discharge of any objects or materials
from laboratories that deal with potentially infectious microorganisms or animal tissues
1. Have the objects or materials been effectively decontaminated or disinfected by an
approved procedure?
2. If not, have they been packaged in an approved manner for immediate on-site
incineration or transfer to another facility with incineration capacity?
3. Does the disposal of the decontaminated objects or materials involve any additional
potential hazards, biological or otherwise, to those who carry out the immediate
disposal procedures or who might come into contact with discarded items outside
the facility?
• 18 •
Steam autoclaving is the preferred method for all decontamination processes. Materials
for decontamination and disposal should be placed in containers, e.g. autoclavable
plastic bags, that are colour-coded according to whether the contents are to be
autoclaved and/or incinerated. Alternative methods may be envisaged only if they
remove and/or kill microorganisms (for more details see Chapter 14).
Handling and disposal procedures for contaminated materials and wastes
An identification and separation system for infectious materials and their containers
should be adopted. National and international regulations must be followed. Categories
should include:
1. Non-contaminated (non-infectious) waste that can be reused or recycled or
disposed of as general, “household” waste
2. Contaminated (infectious) “sharps” – hypodermic needles, scalpels, knives and
broken glass; these should always be collected in puncture-proof containers fitted
with covers and treated as infectious
3. Contaminated material for decontamination by autoclaving and thereafter washing
and reuse or recycling
4. Contaminated material for autoclaving and disposal
5. Contaminated material for direct incineration.
After use, hypodermic needles should not be recapped, clipped or removed from
disposable syringes. The complete assembly should be placed in a sharps disposal
container. Disposable syringes, used alone or with needles, should be placed in sharps
disposal containers and incinerated, with prior autoclaving if required.
Sharps disposal containers must be puncture-proof/-resistant and must not be filled
to capacity. When they are three-quarters full they should be placed in “infectious
waste” containers and incinerated, with prior autoclaving if laboratory practice requires
it. Sharps disposal containers must not be discarded in landfills.
Contaminated (potentially infectious) materials for autoclaving and reuse
No precleaning should be attempted of any contaminated (potentially infectious)
materials to be autoclaved and reused. Any necessary cleaning or repair must be done
only after autoclaving or disinfection.
Contaminated (potentially infectious) materials for disposal
Apart from sharps, which are dealt with above, all contaminated (potentially infectious)
materials should be autoclaved in leakproof containers, e.g. autoclavable, colour-coded
plastic bags, before disposal. After autoclaving, the material may be placed in transfer
containers for transport to the incinerator. If possible, materials deriving from healthcare
activities should not be discarded in landfills even after decontamination. If an
• 19 •
incinerator is available on the laboratory site, autoclaving may be omitted: the
contaminated waste should be placed in designated containers (e.g. colour-coded bags)
and transported directly to the incinerator. Reusable transfer containers should be
leakproof and have tight-fitting covers. They should be disinfected and cleaned before
they are returned to the laboratory for further use.
Discard containers, pans or jars, preferably unbreakable (e.g. plastic), should be
placed at every work station. When disinfectants are used, waste materials should
remain in intimate contact with the disinfectant (i.e. not protected by air bubbles) for
the appropriate time, according to the disinfectant used (see Chapter 14). The discard
containers should be decontaminated and washed before reuse.
Incineration of contaminated waste must meet with the approval of the public health
and air pollution authorities, as well as that of the laboratory biosafety officer (see
section on Incineration in Chapter 14).
Chemical, fire, electrical, radiation and equipment safety
A breakdown in the containment of pathogenic organisms may be the indirect result
of chemical, fire, electrical or radiation accidents. It is therefore essential to maintain
high standards of safety in these fields in any microbiological laboratory. Statutory
rules and regulations for each of these will normally be laid down by the competent
national or local authority, whose assistance should be sought if necessary. Chemical,
fire, electrical and radiation hazards are considered in greater detail in Part VI of this
manual (Chapters 17 and 18).
Additional information regarding safety equipment is presented in Chapter 11.